- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Belova, Evgenia (1)
-
Gulbrandsen, Njål (1)
-
Jacobi, Christoph (1)
-
Janches, Diego (1)
-
Kero, Johan (1)
-
Kozlovsky, Alexander (1)
-
Kuchar, Ales (1)
-
Lester, Mark (1)
-
Liu, Alan (1)
-
Liu, Guiping (1)
-
Meek, Chris (1)
-
Mitchell, Nicholas (1)
-
Nozawa, Satonori (1)
-
Qiao, Zishun (1)
-
Stober, Gunter (1)
-
Tsutsumi, Masaki (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract. Meteor radars have become widely used instruments to study atmospheric dynamics, particularly in the 70 to 110 km altitude region. Thesesystems have been proven to provide reliable and continuous measurements of horizontal winds in the mesosphere and lower thermosphere. Recently,there have been many attempts to utilize specular and/or transverse scatter meteor measurements to estimate vertical winds and vertical windvariability. In this study we investigate potential biases in vertical wind estimation that are intrinsic to the meteor radar observation geometryand scattering mechanism, and we introduce a mathematical debiasing process to mitigate them. This process makes use of a spatiotemporal Laplacefilter, which is based on a generalized Tikhonov regularization. Vertical winds obtained from this retrieval algorithm are compared to UA-ICON modeldata. This comparison reveals good agreement in the statistical moments of the vertical velocity distributions. Furthermore, we present the firstobservational indications of a forward scatter wind bias. It appears to be caused by the scattering center's apparent motion along the meteortrajectory when the meteoric plasma column is drifted by the wind. The hypothesis is tested by a radiant mapping of two meteor showers. Finally, weintroduce a new retrieval algorithm providing a physically and mathematically sound solution to derive vertical winds and wind variability frommultistatic meteor radar networks such as the Nordic Meteor Radar Cluster (NORDIC) and the Chilean Observation Network De meteOr Radars(CONDOR). The new retrieval is called 3DVAR+DIV and includes additional diagnostics such as the horizontal divergence and relative vorticity toensure a physically consistent solution for all 3D winds in spatially resolved domains. Based on this new algorithm we obtained vertical velocitiesin the range of w = ± 1–2 m s−1 for most of the analyzed data during 2 years of collection, which is consistent with the values reportedfrom general circulation models (GCMs) for this timescale and spatial resolution.more » « less
An official website of the United States government
